Friday, November 26, 2010

Equilibrium, Incline, Pullies and Trains

Equilibrium
Assumptions: 1. set positive axises
             2. no acceleration in both x and y direction becuase of the
                object is not moving
             3. no friction because friction can result in inequality.

                                
a = 0
                                     F = ma
Fx = ma                                                    Fy = ma              T1x - T2x = 0                                             -Fg + T1y + T2y = 0
T1x = T2x                                                  T1y + T2y = Fg
                                                           T1sinA + T2sinB = mg
                                                        (T1sinA + T2sinB) / g = m
Inclines - 1

Static - object have not started moving. No acceleration at all.
Assumptions:
1. fs = MFn
2. no acceleration. a = 0
3. set positive axises along the decline
4. no air resistance
No movement, acceleration is zero



Ms = ?
                               F = ma                      
Fy = ma                                              Fx = ma
Fy = 0                                               Fgx - f = 0
Fn - Fgy = 0                                         Fgsinθ- MFn = 0
Fn = Fgy                                             Fgsinθ = MFgy
Fn = Fgcosθ                                         Fgsinθ = MFgcosθ
                                                     Fgsinθ/Fgcosθ = M
                                                     tanθ = M 
Inclines - 2
Kinetic -  object is moving on x-axis thus there is acceleration.

Assumptions:
1. fk = MkFn
2. ax does not equal to zero, ay equal to zero. No movement on y-axis
3.  set positive axises along the direction of movement.
4.  no air resistance
a = ?
                               F = ma
Fy = ma                                               Fx = ma
Fy = 0                                                Fyx - fk = ma
Fn - Fgy = 0                                          Fyx - MkFn = ma
Fn = Fgy                                              Fgsinθ - Mkmgcosθ = ma
Fn = Fgcosθ                                          Fgsinθ - Mkmgcosθ/m = a
Fn = mgcosθ                                                                    

Pulley

1. two free body diagram with different positive axises.
2. Tension 1 = Tension 2
3. no horizontal force in pulley questions, however, if one mass is on a 
   horizontal surface

Assumptions:
1. no friction on rope
2. no air resistance
3. two free body diagrams
4. positive axises set along the movement
5. T1 = T2
6. acceleration is the same for either mass.
mass 1
                               F = ma
Fy = ma                                                   Fx = ma
Fg - T = ma                                             Fx = 0
m1g - T = m1a
T = m1g - m1a (1)

mass 2
                               F = ma
Fy = m2a                                                  Fx = ma
T - m2g = m2a                                         Fx = 0
T = m2g + m2a (2)

Find a
put (1) and (2) together
m1g - m1a = m2g +m2a
m1g-m2g = m1a + m2a
collect like terms:
m1g-m2g = a(m1+m2)
m1g - m2g / m1+m2 = a

Find T
use either equation (1) or (2)
(1): T = m1g - m1a
TRAINS

1. Three free body diagrams, each for different cart.
2.  no vertical movement, thus Fn = Fg
3.  only the leading cart that has the applied force. other carts' 
     force that cause movement is the tension force.
Assumptions:
1.  3 free body diagramss for T1 and T2
2.  acceleration is the same
3.  no air resistance
4.  set posivetion axises along the movement.
                               
mass 1
                                                      F = ma

Fy = m1a
                                                                              Fx= m1a
Fn - m1g = 0
                                                                        Fa - T1 - f = m1a
Fn = m1g
                                                                              Fa - T1 - Mm1g = m1a
                                                                                                Fa - Mm1g - m1a = T1

mass 2
                                                     F = ma
Fy = ma                                                                                      Fx = ma
Fn = Fg                                                                                      T1 - f - T2 = m2a
Fn = m2g                                                                                    Fa - Mm1g - m1a - f -T2 = m2a


mass 3

                                                      F = ma

Fy = m3a                                                                                     Fx = m3a
Fy = 0                                                                                          T2 - f = m3a
Fn - m3g = 0                                                                               T2 = m3a + f
Fn = m3g                                                                                     T2 = m3a + Mm3g


 


No comments:

Post a Comment